26 research outputs found

    Serum Neurofilament Light Association With Progression in Natalizumab-Treated Patients With Relapsing-Remitting Multiple Sclerosis

    Get PDF
    OBJECTIVE: The objective of this study was to investigate the potential of serum neurofilament light (NfL) to reflect or predict progression mostly independent of acute inflammatory disease activity in patients with relapsing remitting multiple sclerosis (RRMS) treated with natalizumab. METHODS: Patients were selected from a prospective observational cohort study initiated in 2006 at the VU University Medical Center Amsterdam, The Netherlands, including patients with RRMS treated with natalizumab. Selection criteria included an age of 18 years or older and a minimum follow-up of 3 years from natalizumab initiation. Clinical and MRI assessments were performedon a yearly basis, and serum NfL was measured at 5 time-points during the follow-up, including on the day of natalizumab initiation (baseline), 3 months, 1 year and 2 years after natalizumab initiation, and on last follow-up visit. Using general linear regression models, we compared the longitudinal dynamics of NfL between patients with and without confirmed EDSS progression between year 1 visit and last follow-up, and between individuals with and without EDSS+ progression, a composite endpoint including the EDSS, 9 hole peg test and timed 25 foot-walk. RESULTS: Eighty-nine natalizumab-treated patients with RRMS were included. Median follow-up time was 5.2 years (IQR 4.3-6.7, range 3.0-11.0) after natalizumab initiation, mean age at time of natalizumab initiation was 36.9 (SD: 8.5), and median disease duration was 7.4 years (IQR 3.8-12.1). Between year 1 and the last follow-up, 28/89 (31.5%) individuals showed confirmed EDSS progression. Data for the EDSS+ endpoint was available for 73 out of the 89 patients and 35/73 (47.9%) showed confirmed EDSS+ progression.We observed a significant reduction in NfL levels 3 months after natalizumab initiation, which reached its nadir of close to 50% of baseline levels 1 year after treatment initiation. We found no difference in the longitudinal dynamics of NfL in progressors versus non-progressors. NfL levels at baseline and 1 year after natalizumab initiation did not predict progression at last follow-up. DISCUSSION: In our cohort of natalizumab-treated patients with RRMS, NfL fails to capture or predict progression that occurs largely independently of clinical or radiological signs of acute focal inflammatory disease activity. Additional biomarkers may thus be needed to monitor progression in these patients. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that serum NfL levels are not associated with disease progression in natalizumab-treated patients with RRMS

    Serum contactin-1 as a biomarker of long-term disease progression in natalizumab-treated multiple sclerosis.

    Get PDF
    BACKGROUND: Natalizumab treatment provides a model for non-inflammation-induced disease progression in multiple sclerosis (MS). OBJECTIVE: To study serum contactin-1 (sCNTN1) as a novel biomarker for disease progression in natalizumab-treated relapsing-remitting MS (RRMS) patients. METHODS: Eighty-nine natalizumab-treated RRMS patients with minimum follow-up of 3 years were included. sCNTN1 was analyzed at baseline (before natalizumab initiation), 3, 12, 24 months (M) and last follow-up (median 5.2 years) and compared to 222 healthy controls (HC) and 15 primary progressive MS patients (PPMS). Results were compared between patients with progressive, stable, or improved disability according to EDSS-plus criteria. RESULTS: Median sCNTN1 levels (ng/mL,) in RRMS (baseline: 10.7, 3M: 9.7, 12M: 10.4, 24M: 10.8; last follow-up: 9.7) were significantly lower compared to HC (12.5; p ⩽ 0.001). It was observed that 48% of patients showed progression during follow-up, 11% improved, and 40% remained stable. sCNTN1 levels were significantly lower in progressors both at baseline and at 12M compared to non-progressors. A 1 ng/mL decrease in baseline sCNTN1 was consistent with an odds ratio of 1.23 (95% confidence interval 1.04-1.45) (p = 0.017) for progression during follow-up. CONCLUSION: Lower baseline sCNTN1 concentrations were associated with long-term disability progression during natalizumab treatment, making it a possible blood-based prognostic biomarker for RRMS

    Kappa free light chains is a valid tool in the diagnostics of MS : A large multicenter study

    Get PDF
    To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes. The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS

    Deep grey matter volume loss drives disability worsening in multiple sclerosis

    Get PDF
    Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS.We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression.SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001).This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions

    Progression of regional grey matter atrophy in multiple sclerosis

    Get PDF
    Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis

    The Concise Guide to PHARMACOLOGY 2013/14: overview.

    No full text
    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    Portrait de Blaise Pascal

    No full text
    2 volumes, illustrés de portrait gravésL’initiative du recueil des vies d’hommes illustres rédigées par Charles Perrault revient à Michel Bégon (1638-1710), l’un des grands «&nbsp;curieux&nbsp;» de son temps, fervent collectionneur de portraits. Bégon a d’autant plus souhaité que Pascal figurât dans le recueil d’hommes illustres dont il avait conçu le projet, que sa mère portait le nom d’Antoinette Begon, comme il le déclarait à l’un de ses correspondants le 6 février 1689&nbsp;: «&nbsp;M.&nbsp;Pascal était fils d’une mère qui portait mon nom. J’ai une vénération particulière pour sa mémoire.&nbsp;» Il confia à Perrault le soin d’écrire les textes d’éloge mais s’occupa personnellement de réunir l’iconographie. En septembre ou octobre 1692, l’une de ses lettres annonçait qu’il avait obtenu «&nbsp;le portrait de M. Pascal&nbsp;», qu’il fit graver un peu plus tard en taille-douce par Gérard Edelinck. Ce portrait était celui de Quesnel ou sa réplique, car c’est celui qu’a copié Edelinck en l’inversant&nbsp;: Pascal y est représenté à mi-corps, de trois quarts à gauche. Cette planche ne se trouve toutefois que très rarement dans le premier tome des Hommes illustres &nbsp;: à la suite d’une attaque des jésuites, les éloges de Pascal et d’Antoine Arnauld furent retirés de la plupart des exemplaires pour être remplacés par ceux du lexicographe Charles du Cange et du théologien Louis Thomassin.téléchargeabl

    Efficient characterization of retro-, lenti-, and foamyvector-transduced cell populations by high-accuracy insertion site sequencing

    No full text
    The identification of unknown genomic flanking DNA sequences can be used for the molecular monitoring of retro-, lenti- and foamyviral integration, transgenes in early embryogenesis, insertional mutagenesis, cell fate, and stem cell plasticity. Most existing methods reflect shortcomings in sensitivity and or specificity, thus limiting genomic sequencing of unknown flanking DNA to clonal preparations. The application of linear amplification-mediated PCR (LAM-PCR), a recently developed direct sequencing technique for flanking DNA, should circumvent current limitations in different research fields. This technique combines preamplification of target DNA with a unique succession of enzymatic reactions on solid-phase. Using LAM-PCR, we show the previously unfeasible in vivo retro-, lenti- and foamyvirus integration site analysis in primate peripheral blood hematopoietic cells and human xenograft hematopoiesis. In light of two severe adverse events that occurred in a clinical SCID-X1 gene therapy trial, in vivo monitoring of the reinfused transduced cell pool by integration site analysis will be an important component of each gene transfer and therapy study aimed at clinical use
    corecore